

Mechanics & Dynamics Key Equations

Forces & Moments as Vectors

The magnitude of a moment about a point *P* in scalar form:

$$|\boldsymbol{M}_P| = |\boldsymbol{F}|D$$

In vector form, this is given as the cross product of the position and force vectors:

$$\mathbf{M}_P = \mathbf{r} \times \mathbf{F} \qquad |\mathbf{M}_P| = |\mathbf{r} \times \mathbf{F}|$$

The SUVAT equations for constant, linear acceleration:

$$v = u + at$$

$$v^2 = u^2 + 2as$$

$$s = ut + \frac{1}{2}at^2$$

$$s = vt - \frac{1}{2}at^s$$

$$s = \frac{1}{2}(u+v)t$$

Integral relations:

Moments about a line:

$$M_L = (\hat{e} . r \times F) \hat{e}$$

$$\mathbf{M}_L = (\hat{\mathbf{e}} \cdot \mathbf{M}_P) \,\hat{\mathbf{e}}$$

In both cases, the direction and sign of the moments are given by the right-hand rule.

Curvilinear Kinematics of Particles

Angular velocity & acceleration:

$$\omega = \dot{\theta} = \frac{d\theta}{dt}$$

$$\alpha = \ddot{\theta} = \frac{d^2\theta}{dt} = \frac{d\omega}{dt}$$

Unit conversion: $rad/s = RPM \times \frac{\pi}{30}$

Velocity is tangential:

$$v = r\omega$$
 $v = v \hat{e}_t = r\omega \hat{e}_t$

Acceleration has both components:

$$a = r\alpha$$
 $a = a \hat{e}_t + v\omega \hat{e}_n = a \hat{e}_t + \frac{v^2}{r} \hat{e}_n$

For Circular motion:

$$v = R\omega$$
 $v = R\omega \hat{e}_t$
 $a = R\alpha$ $a = R\alpha \hat{e}_t + \frac{v^2}{R} \hat{e}_n$

In Polar Coordinates:

$$\begin{split} & \boldsymbol{v} = \dot{r} \; \hat{\boldsymbol{e}}_r + r \dot{\boldsymbol{\theta}} \; \hat{\boldsymbol{e}}_{\boldsymbol{\theta}} \\ & \boldsymbol{a} = \left(\ddot{r} - r \dot{\boldsymbol{\theta}}^2 \right) \hat{\boldsymbol{e}}_r + \left(r \ddot{\boldsymbol{\theta}} + 2 \dot{r} \dot{\boldsymbol{\theta}} \right) \hat{\boldsymbol{e}}_{\boldsymbol{\theta}} \end{split}$$
 Where $\boldsymbol{r} = r \hat{\boldsymbol{e}}_r$

Kinematics of Rigid Bodies

Velocity of a point P on a rigid body:

$$v_P = \boldsymbol{\omega} \times \boldsymbol{r}$$

Relative motion:

$$v_{A/B} = \boldsymbol{\omega} \times r_{A/B}$$

where
$$a_{A/B} = a_A - a_B$$

For a sliding contact at point A:

$$v_A = v_B + \omega \times r_{A/B} + v_r$$

Where v_r is the velocity relative to the slot.

Acceleration of a point on a rigid body:

$$a = \alpha \times r + \omega \times (\omega \times r)$$

where $\alpha \times r$ is the tangential component and $\omega \times (\omega \times r)$ is the normal component.

For general plane motion, the normal component becomes:

$$\mathbf{a} = \boldsymbol{\alpha} \times \mathbf{r} - \omega^2 \mathbf{r}$$

Relative motion:

$$a_{A/B} = lpha imes r_{A/B} - \omega^2 r_{A/B}$$

where $a_{A/B} = a_A - a_B$

For a sliding contact at point A:

$$\mathbf{a}_A = \mathbf{a}_B + \boldsymbol{\alpha} \times \mathbf{r}_{A/B} - \omega^2 \mathbf{r}_{A/B} + \mathbf{a}_r + 2\boldsymbol{\omega} \times \boldsymbol{v}_r$$

Where a_r is the acceleration relative to the slot.

Friction

F is the frictional force, *R* the normal reaction with the surface:

$$F = \mu R$$

 $\mu_s = \tan \alpha_{max}$

 μ_s is the static coefficient of friction (~20% > μ_k , the kinetic coefficient of friction).

 α_{max} is the friction angle – the maximum angle of inclination before the object slips:

Screw threads:

$$tan\phi = \frac{t}{\pi d_m}$$

Square Screw Threads:

$$P = \left(\frac{\tan\phi + \mu_S}{1 - \mu_S \tan\phi}\right) \times W$$

For v-threads:

$$P = \left(\frac{\tan\phi + \mu_s \sec\beta}{1 - \mu_s \sec\beta \tan\phi}\right) \times W$$

Belts:

For square belts:

 $\frac{T_1}{T_2} = e^{\mu_S \alpha}$

For v-shaped belts:

 $\frac{T_1}{T_2} = e^{\frac{\mu_s \alpha}{\sin \gamma}}$

Where $\mu_{\scriptscriptstyle S}$ is the static coefficient of friction, and α the wrap angle.

Where γ is the angle of the v-section.

Clutches

For uniform pressure:

$$F = \pi p (R_1^2 - R_2^2)$$

$$T = \frac{2}{3}\mu F \left(\frac{R_1^3 - R_2^3}{R_1^2 - R_2^2} \right)$$

For uniform wear:

$$T = \mu F\left(\frac{R_1 + R_2}{2}\right)$$

Inertia

A body rotates with moment of inertia, $I_{\it G}$ about its centre of gravity, $\it G$:

$$I_G = \frac{1}{12}m(b^2 + h^2)$$
 $I_G = \frac{1}{2}mr^2$

$$I_G = \frac{1}{2}mr^2$$

$$I_G = \frac{1}{12}mL^2$$

$$I_G = \frac{2}{5}mr^2$$

Rectangular Laminar Circular Laminar

Uniform Rod

Sphere

A body with radius of gyration k has moment of inertia:

$$I = mk^2$$

Sums of Moments

$$\sum M = I\alpha$$

$$\sum M_P = -\bar{y}m(a_G)_x + \bar{x}m(a_G)_y + I_G\alpha$$

Energy

The total kinetic energy, T, of a body is the sum of linear and rotational energies:

$$T = \left[\frac{1}{2}mv^2\right] + \left[\frac{1}{2}I_0\omega^2\right]$$

Impulse & Momentum

Impulse is the change in linear momentum:

$$\int_{t_1}^{t_2} \sum F \, dt = m(v_2 - v_1) = \Delta p$$

Angular Momentum at a point P relative to G:

$$H_P = I_G \omega + m v_x (y_G - y_P) - m v_y (x_G - x_P)$$

Angular Impulse:

$$\int_{t_1}^{t_2} \sum M_G dt = \int_{t_1}^{t_2} Fr dt = I_G(\omega_2 - \omega_1) = \Delta H_G$$